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6.1   Overview of Transport Regimes



Mobility and Conduc9vity
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• mobility  is the propor9onality constant between the electric field  charge velocity   

  

• conduc9vity  is defined via Ohm’s law, with current density  

 

from which one obtains, with hole density  and electron density  

 

 

• charge mobility is also  the propor9onality constant between (charge) diffusion constant  and 
the thermal energy (Einstein–Smoluchowski rela9onship) 

μ F v

v = μF

σ j

j = σF

p n

j = q(nve + pvh)
σ = q(nμe + pμh)

D

D = μ
q

kBT



Inorganic vs Organic Materials
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• inorganic (semi)conductors 

• electric field screening due to large dielectric constants ( )  

• weak electron-phonon coupling 

• large charge free mean paths  (lafce constant) 

• large mean free +me  between scabering events  

• high mobili+es inorg = 10–1000 cm2 V–1 s–1 (amorphous Si 1 cm2 V–1 s–1) 

• organic (semi)conductors  

• poor electric field screening due to small dielectric constants ( )  

• strong electron-phonon (vibra+onal) coupling 

• charge free mean path on the same order of lafce constant   

• org = 1–40 cm2 V–1 s–1 for band transport or transient localiza+on 

• org = 10–3–1 cm2 V–1 s–1 for incoherent transport 

• organic (semi)conductors are on the borderline of coherent transport  through band-like states 
and incoherent transport through randomized charge transfer steps of charges localized on 
molecular sites due to polariza9on of the local orbital environment (polarons) and disorder

εr > 10

λ ≫ a
τ

μ

εr ≈ 3

λ ≈ a
μ
μ



Charge Transport Regimes in Organic Semiconductors 
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• most transport models have ini9ally been developed for inorganic semiconductors 
• organic semiconductors are molecular materials and heterogeneous 
• transport may depend on structure and defects on different length scales 
• different experimental techniques emphasize different aspects of transport mechanisms
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Simple Organic Semiconductor Molecular Crystal Model
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• because of the intrinsically small intermolecular electronic coupling,  a charged system with an 
excess electron (or a hole) is well described as a linear combina9on of the LUMOs (HOMOs) of the 
isolated molecules  

• simplified approxima9ons: 
• one molecule per unit cell, at distance a  
• only one orbital per molecule (HOMO or LUMO, for hole or electron transport) 

• one effec+ve mode of vibra+on included, with a  harmonic oscillator poten+al

• charge transport models in molecular crystals of organic semiconductors can be approximated as a 
1D molecular crystal of a chain of energy sites

n n+1n-1

E

Energy sites

HOMOs or LUMOs



KEY CONCEPT: see A. Köhler and H. Bässler, Electronic Processes in Organic Semiconductors, p. 213-215 

General One-Electron Hamiltonian for Charge Transport
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• fundamental nature of the transport process determined by the rela9ve magnitudes of the 
excita9on & transfer terms versus the dynamic disorder terms and the sta9c disorder terms

• different transport regimes can be illustrated with a general one-electron Hamiltonian 

• Hamiltonian includes electronic coupling, dynamic disorder, sta+c disorder of the energy sites but 
assumes low carrier densi+es, no electron correla+on or Coulomb interac+on

sta9c disorder effects (on site energies and coupling, respec9vely)

electron transfer term (intermolecular coupling)

dynamic disorder effects (on site energies and coupling, respec9vely)

excita9on term (intramolecular site energy)

H = H0 + H1 +H2 + H3 +H4 + H5



KEY CONCEPT: see readers for “second quan+za+on” formalism for mul+par+cle systems

Excita9on and Charge Transfer Terms
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• the electron transfer term represents the electronic interac9on between energy sites 

• it defines the interac9on energy  media9ng the transfer of an electron from site m to nJnm

• excita+on term represents total energy of an electronically and vibra+onally excited system  

• operators  (or ) excite (relax) an electron in an orbital on energy site  in ideal crystal 

• operators  (or ) raise (lower) a vibra+on by an energy quantum  

a†
n an ϵn

b†
λ bλ ℏωλ

excita9on term

vibra9onal 
excita9on term

electronic 
excita9on term

H0 = ∑
n

ϵn a†
nan + ∑

λ
ℏωλ (b†

λ bλ + 1
2 )

electron transfer term

H1 = ∑
n,m;n≠m

Jnm a†
nam



KEY CONCEPT

Dynamic Disorder Terms
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• off-diagonal dynamic disorder term covers vibra9on-induced changes of the coupling Jnm

• interac+on of electronic and vibra+onal excita+ons captured by the dynamic disorder terms 

• varia+ons of the system parameters due to electron-phonon coupling taken into account 

• strength of the electron-phonon coupling expressed by the coupling constants g and f

off-diagonal dynamic disorder term

H3 = ∑
n,m;n≠m

∑
λ

f2
nmλ ℏωλ a†

nam (bλ + b†
−λ)

diagonal dynamic disorder term

H2 = ∑
λ

∑
n

g2
nλ ℏωλ a†

nan (bλ + b†
−λ)

• diagonal dynamic disorder term covers vibra9on-induced changes of the site energy ϵn



KEY CONCEPT

Sta9c Disorder Terms
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• off-diagonal sta9c disorder described by a distribu9on func9on  for interac9on energyδJnm

• sta+c disorder terms take effects due to structural devia+ons from an ideal crystal into account by 
introduc+on of a varia+on factor δ

diagonal static disorder term

H4 = ∑
n

δϵn a†
nan

off-diagonal static disorder term

H5 = ∑
n,m;n≠m

δJnm a†
nam

• diagonal sta9c disorder introduces a distribu9on func9on  for the site energyδϵn



KEY CONCEPT

Charge Transport Regimes in Organic Semiconductors
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• different charge transport regimes can be categorised based on the rela9ve magnitudes of  

• the interac+on energy  between transport sites 

• the electron-phonon coupling represented  through the constants  and   

• the sta+c disorder causing varia+ons in site energy  and interac+on energy  

Jnm

gnλ fnmλ

δϵn δJnm

dominated by 
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H1(Jnm) H1(Jnm) ≈ H3( fnmλ) H4(δϵn), H5(δJnm)H2(gnλ), H3( fnmλ)
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Introduction to Second Quantization

Lucile Chassat - Samuel Van Gele

January 2021

NOTE: This reader is an adapted, shortened version of chapter 2 of the book ”Quantum
Field Theory For The Gifted Amateur” by T. Lancaster and S. J. Blundell.

1 The Concept of Second Quantization

For the upcoming chapter on charge transport, we will need to get familiar with the concept
of second quantization as well as the formalism of annihilation and creation operators, as
these are used in the Hamiltonians describing charge transport.

The concept of second quantization is a formulation used to describe multi-body systems
in quantum theory and is also known under the name of quantum field theory. This theory
takes a view on physics which not only sees particles like electrons as waves (”first quanti-
zation”) but also treats wave phenomena as particles (”second quantization”). This second
quantization thus arises whenever we find that objects previously thought of as waves (such
as electromagnetic radiation and lattice vibrations) can also act as particles (photons and
phonons).

The concept of second quantization just provides a new language to describe such sit-
uations that simplifies the overall comprehension of many-body systems often encountered
in physics and chemistry. The description makes use of so-called creation and annihila-
tion operators that are introduced to insert or delete a single-particle state from the wave
function.

2 The Example of Harmonic Oscillators

We will take the model of the harmonic oscillator as this is one of the simplest models to
describe solids. We can regard atoms/molecules/charge sites as being interconnected by
springs in the lattice and that charge transport can occur through this lattice. This model
is also used at a smaller scale to describe molecular vibrations. In this context, the creation
and annihilation operators can be regarded as the raising and lowering operators, which add
or remove energy quanta to move from one energy level to another one.

So, in order to understand the origin of these operators, which will be useful in our charge
transport models, let us recall the simple harmonic oscillator problem, a mass attached to
a spring. The Hamiltonian can be written as a combination of the kinetic energy and the
potential energy for the spring constant K:
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Introduction to the “second quantization” formalism for non-
relativistic quantum mechanics
A possible substitution for Sections 6.7 and 6.8 of Feynman’s “Statistical
Mechanics”

Hal Tasaki∗

This is a self-contained and hopefully readable account on the method of creation and
annihilation operators (also known as the Fock space representation or the “second quan-
tization” formalism) for non-relativistic quantum mechanics of many particles.1 Assuming
knowledge only on conventional quantum mechanics in the wave function formalism, we
define the creation and annihilation operators, discuss their properties, and introduce cor-
responding representations of states and operators of many-particle systems.2 As the title
of the note suggests, we cover most topics treated in sections 6.7 and 6.8 of Feynman’s3

“Statistical Mechanics: A Set of Lectures” (Westview Press, 1988).4

We note that all the contents of the present note are completely standard, and the
definitions and the derivations presented here have been known to many. Although the style
of the present note may be slightly more mathematical than standard physics literatures,
we do not try to achieve full mathematical rigor.5

Contents

1 Wave functions of many particles 1

2 Creation and annihilation operators 4

3 The Fock space representation 9

4 Schrödinger equation and Hamiltonians 16

1 Wave functions of many particles

Single particle We start by recalling the standard quantum mechanical description of a
single particle, such as an electron or an atom. A state (at an instantaneous moment) of
a particle in the three dimensional space is described by a wave function ϕ(r), which is a

∗ Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
hal.tasaki@gakushuin.ac.jp

1Japanese translation is available: https://www.gakushuin.ac.jp/~881791/pdf/2ndQNoteJ.pdf
2Note to experts: In particular we here derive the (anti)commutation relations of the creation and annihilation

operators, rather than simply declaring them. In this sense our approach is quite close to that of Feynman’s. But
we here focus on the action of creation/annihilation operators on general N body wave functions, while Feynman
makes a heavy use of Slater-determinant-type states from the beginning. We hope that our presentation provides
a better perspective on the formalism.

3A friend of mine pointed me out that this happens to be the centennial year of Richard Feynman’s birth.
Let me declare that this small article is to celebrate his 100th birthday!

4I wrote this note for undergraduate students in our group who are studying Feynman’s textbook. The idea
was that they can skip these two sections, which are somewhat complicated, by studying this note (and they
indeed did so).

5The mathematically minded reader might be bothered by our heuristic treatment of the operators ψ̂(x) and
â(k). Our treatment can be made rigorous by using suitable advanced concepts.
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